
1

Practice TypeScript
Techniques Building React
Server Components App
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Microsoft MVP

 Freelance developer/instructor

 Currently at https://someday.com/

 Twitter: @mauricedb

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

3© ABL - The Problem Solver

https://someday.com/
https://twitter.com/MauriceDB
http://www.theproblemsolver.nl/
mailto:maurice.de.beijer@gmail.com
http://www.theproblemsolver.nl/

Topics

 Compiling the code to catch type errors early

 Using the satisfies operator

 Use type mappings to optimize your code

 Custom type mappings are really powerful
 Can help detect all sorts of errors quickly

 Can make types more readable in IntelliSense

 Use Template Literal Types to manipulate types

 Use Opaque Types to help with type safety

 Make TypeScript even stricter and catch more potential errors

 Prevent objects from being mutated by accident

 Improve performance when importing large JSON files

© ABL - The Problem Solver 4

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 5

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 6

Install
Node.js & NPM

© ABL - The Problem Solver 7

https://nodejs.org/en/
https://git-scm.com/downloads

Following
Along

 Repo: https://github.com/mauricedb/ts-conf-2023-ws

 Slides: https://bit.ly/ts-conf-2023-ws

© ABL - The Problem Solver 8

https://github.com/mauricedb/ts-conf-2023-ws
https://bit.ly/ts-conf-2023-ws
https://github.com/mauricedb/ts-conf-2023-ws

Create a new
Next.js app

© ABL - The Problem Solver 9

https://github.com/mauricedb/ts-conf-2023-ws

Adding Shadcn
components

© ABL - The Problem Solver 10

https://github.com/mauricedb/ts-conf-2023-ws

The changes

© ABL - The Problem Solver 11

https://github.com/mauricedb/ts-conf-2023-ws/commits/main

Clone the
GitHub
Repository

© ABL - The Problem Solver 12

https://github.com/mauricedb/ts-conf-2023-ws

Install NPM
Packages

© ABL - The Problem Solver 13

https://github.com/mauricedb/ts-conf-2023-ws

Start branch

© ABL - The Problem Solver 14

 Start with the 00-start branch
 git checkout --track origin/00-start

Start the
application

© ABL - The Problem Solver 15

https://github.com/mauricedb/ts-conf-2023-ws

The
application

© ABL - The Problem Solver 16

https://github.com/mauricedb/ts-conf-2023-ws

Compiling the code

© ABL - The Problem Solver 17

Compiling the
code

 Quite often TypeScript code is not type checked during
development

 Create React App use Babel (JavaScript)

 Vite uses ESBuild (Go)

 Next.js uses SWC (Rust)

 These remove TypeScript annotations and treat the code as
modern JavaScript

 This means that TypeScript type errors can go unnoticed

 Run the TypeScript compiler to check the code

© ABL - The Problem Solver 18

package.json

© ABL - The Problem Solver 19

https://github.com/mauricedb/ts-conf-2023-ws/commit/922eb40ba37367872c35e0d15142acc69e2bb83b

npm run compile

© ABL - The Problem Solver 20

https://github.com/mauricedb/ts-conf-2023-ws/commit/922eb40ba37367872c35e0d15142acc69e2bb83b

shopping-
cart.tsx

© ABL - The Problem Solver 21

https://github.com/mauricedb/ts-conf-2023-ws/commit/922eb40ba37367872c35e0d15142acc69e2bb83b

npm run compile

© ABL - The Problem Solver 22

https://github.com/mauricedb/ts-conf-2023-ws/commit/922eb40ba37367872c35e0d15142acc69e2bb83b

Compile and Test
on GitHub

© ABL - The Problem Solver 23

Compile and
Test on GitHub

 Make sure to check your code with each pull request on GitHub
 Include ESLint and Next build

 Generate types from other sources if appropriate
 Prisma, GraphQL, OpenAPI etc.

 When included in GitHub they can be out of date

© ABL - The Problem Solver 24

compile-and-test.yml

© ABL - The Problem Solver 25

https://github.com/mauricedb/ts-conf-2023-ws/commit/7a07f78558cd5eb41389bc1e9036af2377b2156d

What are React Server
Components?

© ABL - The Problem Solver 26

React Server
Components

 React Server Components only execute on the server
 Traditionally React components always execute in the browser

 This is not the same as Server Side Rendering
 With SSR components are executed both on the client and server

 Applications are a combination of server and client components

 The result is that the back and front-end code are more integrated
 Leading to better type safety☺

© ABL - The Problem Solver 27

Before RSC

© ABL - The Problem Solver 28

With RSC

© ABL - The Problem Solver 29

React Server
Components

© ABL - The Problem Solver 30

 Server components can be asynchronous
 Great to load data from some API

 Server components render just once
 No re-rendering with state changes or event handling

 The server component code is not send to the browser
 Can safely use secure API key’s etc.

 Smaller bundle sizes

 ☞ React Server Components require TypeScript 5.1 ☜

Client
Component

© ABL - The Problem Solver 31

 Server components can render server and client components
 Client components can only render client components

 Adding 'use client’ to the top of a component makes it a
client component

Server
Component

© ABL - The Problem Solver 32

Satisfies operator

© ABL - The Problem Solver 33

Satisfies
operator

 The satisfies operator lets us validate that the type of an
expression matches some type, without changing the resulting
type of that expression.

💡 The goal is to report type error where they are caused💡

© ABL - The Problem Solver 34

movie-card.tsx

© ABL - The Problem Solver 35

https://github.com/mauricedb/ts-conf-2023-ws/commit/93247dbb4ce41bee4d82996c10b357309e036b31

movies/page.tsx

© ABL - The Problem Solver 36

https://github.com/mauricedb/ts-conf-2023-ws/commit/93247dbb4ce41bee4d82996c10b357309e036b31

Prevent Overfetching

© ABL - The Problem Solver 37

Prevent
Overfetching

 Using satisfies Prisma.MovieSelect is not optimal

 Allows Overfetching of movie data
 Making the application slightly slower than required

 This can be prevented with a type mapping
 Create a MovieSelect like object with just the required keys

© ABL - The Problem Solver 38

movies/page.tsx

© ABL - The Problem Solver 39

https://github.com/mauricedb/ts-conf-2023-ws/commit/2343ef6e7263829d342bff01bbd6260c58611d3e

movies/page.tsx

© ABL - The Problem Solver 40

https://github.com/mauricedb/ts-conf-2023-ws/commit/2343ef6e7263829d342bff01bbd6260c58611d3e

Break time

Photo by Mindspace Studio on Unsplash

https://unsplash.com/@mindspacestudio?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Custom type mapping

© ABL - The Problem Solver 42

Custom type
mapping

 The TypeScript type system itself is a programming language
 With variables, loops, conditional logic etc.

 Example: turn Zod schema into it’s TypeScript type

© ABL - The Problem Solver 43

Type mapping
Boolean logic

© ABL - The Problem Solver 44

https://github.com/mauricedb/ts-conf-2023-ws/commit/99fa27d82426d487f71f9cc762fb6bee4e981109

type-mapping.ts

© ABL - The Problem Solver 45

https://github.com/mauricedb/ts-conf-2023-ws/commit/99fa27d82426d487f71f9cc762fb6bee4e981109

The display of types

© ABL - The Problem Solver 46

The display of
types

 Type mappings sometimes lead to hard to read types

 Easy to fix with another type mapping

© ABL - The Problem Solver 47

type-mapping.ts

© ABL - The Problem Solver 48

https://github.com/mauricedb/ts-conf-2023-ws/commit/45997bc191e2a9f0d91dc6f01ffdbde9d293a27a

type-mapping.ts

© ABL - The Problem Solver 49

https://github.com/mauricedb/ts-conf-2023-ws/commit/45997bc191e2a9f0d91dc6f01ffdbde9d293a27a

type-mapping.ts

© ABL - The Problem Solver 50

https://github.com/mauricedb/ts-conf-2023-ws/commit/45997bc191e2a9f0d91dc6f01ffdbde9d293a27a

Opaque Types

© ABL - The Problem Solver 51

Opaque Types

 A lot of business data ultimately end up as a primitive data type
 They are all modeled as string, number etc.

 The compiler doesn’t know the difference between them
 A PO box number and invoice total amount are both type “number”

 The same for the compiler

 Very different for the business case

 Opaque types can make it easier to reason about code
 By providing distinct types and a clear separation

Console
output

© ABL - The Problem Solver 53

checkout-
shopping-
cart.ts

© ABL - The Problem Solver 54

https://github.com/mauricedb/ts-conf-2023-ws/commit/a38d5038944b5c73174ccacab45491770f64e9a6

checkout-
shopping-
cart.ts

© ABL - The Problem Solver 55

https://github.com/mauricedb/ts-conf-2023-ws/commit/a38d5038944b5c73174ccacab45491770f64e9a6

checkout-
dialog.tsx

© ABL - The Problem Solver 56

https://github.com/mauricedb/ts-conf-2023-ws/commit/a38d5038944b5c73174ccacab45491770f64e9a6

More strict features

© ABL - The Problem Solver 57

More Strict
Features

 There are many more strict settings not enabled by “strict”
 allowUnreachableCode

 allowUnusedLabels

 exactOptionalPropertyTypes

 noFallthroughCasesInSwitch

 noImplicitOverride

 noImplicitReturns

 noPropertyAccessFromIndexSignature

 noUncheckedIndexedAccess

 noUnusedLocals

 noUnusedParameters

© ABL - The Problem Solver 58

noUnchecked
IndexedAccess

 By default every index from an array is seen as the array element type
 Even if it exceeds the items available and will result in undefined

 Enabling “noUncheckedIndexedAccess” requires you to check the
element before using

 Whether the element is the array element type or undefined

 Try showing the Horror movies and observe a runtime error

© ABL - The Problem Solver 59

tsconfig.json

© ABL - The Problem Solver 60

https://github.com/mauricedb/ts-conf-2023-ws/commit/0af8664c0c5f69756f54aacfc961a76d38e5afb6

movies/page.tsx

© ABL - The Problem Solver 61

https://github.com/mauricedb/ts-conf-2023-ws/commit/0af8664c0c5f69756f54aacfc961a76d38e5afb6

Using Readonly<>

© ABL - The Problem Solver 62

Readonly<T>

 The Readonly<T> mapped type creates a read-only mapped type
 Can’t change properties anymore

 Or use “array.push()” etc.

⚠️ Readonly<T> is not recursive⚠️
 Only the first level of properties becomes read-only

 There is also a ReadonlyArray<T> mapped type

💡Recommended for function arguments to show intent💡
 And AJAX responses etc.

© ABL - The Problem Solver 63

movie-card.tsx

© ABL - The Problem Solver 64

https://github.com/mauricedb/ts-conf-2023-ws/commit/131983634b6014296b44bf559289f4b6f8098a34

Custom type mapping
DeepReadonly<>

© ABL - The Problem Solver 65

DeepReadonly<T>

 Make a whole nested object structure read-only
 Recursive mapped types are very powerful

 An improvement over the default “Readonly<T>”

 Source:
https://gist.github.com/basarat/1c2923f91643a16a90de638e76bce0ab

© ABL - The Problem Solver 66

https://gist.github.com/basarat/1c2923f91643a16a90de638e76bce0ab

movies/page.tsx

© ABL - The Problem Solver 67

https://github.com/mauricedb/ts-conf-2023-ws/commit/a5536afce59f81eef72bb0f74662431e44a4e56f

Template Literal Types

© ABL - The Problem Solver 68

Template
Literal Types

 Builds on string literal types but manipulates type definitions
 For example change a types snake case to camel case key names

© ABL - The Problem Solver 69

type-mapping.ts

© ABL - The Problem Solver 70

https://github.com/mauricedb/ts-conf-2023-ws/commit/c45f52342292c5674334fdaf369799b8c175c2a8

type-mapping.ts

© ABL - The Problem Solver 71

https://github.com/mauricedb/ts-conf-2023-ws/commit/c45f52342292c5674334fdaf369799b8c175c2a8

type-
mapping.ts

© ABL - The Problem Solver 72

https://github.com/mauricedb/ts-conf-2023-ws/commit/c45f52342292c5674334fdaf369799b8c175c2a8

Typing JSON files

© ABL - The Problem Solver 73

Typing JSON
files

 IntelliSense will parse an imported JSON file to determine the types
 This can be very slow with large files

 Add a <filename>.d.json.ts to explicitly type the imported data
 ⚠️Will not validate that the JSON actually has the correct shape ⚠️

© ABL - The Problem Solver 74

genres.d.json.ts

© ABL - The Problem Solver 75

https://github.com/mauricedb/ts-conf-2023-ws/commit/372bfebb85d68d8d1c12e6b5f7b7920b16b571e3

tsconfig.json

© ABL - The Problem Solver 76

https://github.com/mauricedb/ts-conf-2023-ws/commit/372bfebb85d68d8d1c12e6b5f7b7920b16b571e3

seed.ts

© ABL - The Problem Solver 77

https://github.com/mauricedb/ts-conf-2023-ws/commit/372bfebb85d68d8d1c12e6b5f7b7920b16b571e3

Conclusion

 Compiling the code to catch type errors early
 Compile and Test your code with each pull request

 Using the satisfies operator

 Use type mappings to optimize your code
 Prevent over fetching of data with Prisma

 Custom type mappings are really powerful
 Can help detect all sorts of errors quickly

 Make mapped types more readable
 Using another type mapping ☺

 Opaque Types can help with type safety
 Not all strings represent the same data but for TypeScript a string is a string

 Use more strict features beyond the basics
 Using noUncheckedIndexedAccess can help catch potential runtime errors

 Using Readonly<> and ReadonlyArray<>
 Prevent objects from being mutated by accident

 Custom type mapping DeepReadonly<>

 Use Template Literal Types to manipulate types

 Typing JSON files can help performance when importing large JSON files

© ABL - The Problem Solver 78

Maurice de Beijer

@mauricedb

maurice.de.beijer
@gmail.com

© ABL - The Problem Solver 79

https://twitter.com/MauriceDB
mailto:maurice.de.beijer@gmail.com
mailto:maurice.de.beijer@gmail.com

	Slide 1
	Slide 2: Practice TypeScript Techniques Building React Server Components App
	Slide 3
	Slide 4: Topics
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install Node.js & NPM
	Slide 8: Following Along
	Slide 9: Create a new Next.js app
	Slide 10: Adding Shadcn components
	Slide 11: The changes
	Slide 12: Clone the GitHub Repository
	Slide 13: Install NPM Packages
	Slide 14: Start branch
	Slide 15: Start the application
	Slide 16: The application
	Slide 17: Compiling the code
	Slide 18: Compiling the code
	Slide 19: package.json
	Slide 20: npm run compile
	Slide 21: shopping-cart.tsx
	Slide 22: npm run compile
	Slide 23: Compile and Test on GitHub
	Slide 24: Compile and Test on GitHub
	Slide 25: compile-and-test.yml
	Slide 26: What are React Server Components?
	Slide 27: React Server Components
	Slide 28: Before RSC
	Slide 29: With RSC
	Slide 30: React Server Components
	Slide 31: Client Component
	Slide 32: Server Component
	Slide 33: Satisfies operator
	Slide 34: Satisfies operator
	Slide 35: movie-card.tsx
	Slide 36: movies/page.tsx
	Slide 37: Prevent Overfetching
	Slide 38: Prevent Overfetching
	Slide 39: movies/page.tsx
	Slide 40: movies/page.tsx
	Slide 41: Break time
	Slide 42: Custom type mapping
	Slide 43: Custom type mapping
	Slide 44: Type mapping Boolean logic
	Slide 45: type-mapping.ts
	Slide 46: The display of types
	Slide 47: The display of types
	Slide 48: type-mapping.ts
	Slide 49: type-mapping.ts
	Slide 50: type-mapping.ts
	Slide 51: Opaque Types
	Slide 52: Opaque Types
	Slide 53: Console output
	Slide 54: checkout-shopping-cart.ts
	Slide 55: checkout-shopping-cart.ts
	Slide 56: checkout-dialog.tsx
	Slide 57: More strict features
	Slide 58: More Strict Features
	Slide 59: noUnchecked IndexedAccess
	Slide 60: tsconfig.json
	Slide 61: movies/page.tsx
	Slide 62: Using Readonly<>
	Slide 63: Readonly<T>
	Slide 64: movie-card.tsx
	Slide 65: Custom type mapping DeepReadonly<>
	Slide 66: DeepReadonly<T>
	Slide 67: movies/page.tsx
	Slide 68: Template Literal Types
	Slide 69: Template Literal Types
	Slide 70: type-mapping.ts
	Slide 71: type-mapping.ts
	Slide 72: type-mapping.ts
	Slide 73: Typing JSON files
	Slide 74: Typing JSON files
	Slide 75: genres.d.json.ts
	Slide 76: tsconfig.json
	Slide 77: seed.ts
	Slide 78: Conclusion
	Slide 79: Maurice de Beijer @mauricedb maurice.de.beijer@gmail.com

